China Hot selling Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component

Product Description

Product Description

 

The magnetic wheel is a non-contact power transmission device that uses the principle of interaction between the attraction and the repulsion force of the magnet.
The magnetic wheel is a non-contact driven product in the production line of LCD, PDP, PCB, TFT, OLED, SOLAR CELL, etc. in a clean environment that does not allow fine impurities. It can replace mechanical gears driven by friction.
 

Detailed Photos

 

Features

 

Dust-free environment Using magnetic force, in the non-contact state, it can be used to transfer products in a vacuum where a dust-free environment is required.
Low gas discharge Large machines into the vacuum machine, in order to reduce gas, according to special surface treatment, can be used in 10-5PA environment
Low sound It has a subwoofer effect unimaginable in previous transmission machines such as gears and conveyor belts. Can provide a clean and tidy production environment.
Torque limit function If the abnormal load is generated, the 2 magnetic gears will rotate separately to achieve the torque limit function. In addition, because of the non-contact environment, no mechanical wear, because the service life is longer than the previous transmission tools such as gears.
Reduce cost Reduce operating costs without replacing parts due to wear and tear. Because even if the vacuum standby is repeated, it will not have any impact on the performance, so there is no need for complex and expensive design in the past

 

Product Parameters

 

Using

 

Other Products

 

Packaging & Shipping

 

FAQ

 

Q: Are you trading company or manufacturer ?
A: We are manufacturer.
Q: How to order ?
A: Normally you can order our products by using Made-in China platform or contacting representatives by Email. 
After we receive your messages, we will help you to choose the right specifications and other inquiries. 
Then we will send an proforma invoice to you via mail, it includes details of your order and our bank information. 
After we received your payment by TT, we will ship your goods and we will send the invoice, packing list, and the express tracking number via mail.
Q: What is our term of trade ?
A: Usually we use EX WORKS. If you need other term of trade, please let us know.
Q: How to pay ?
A: We accept the payment by T/T (bank transfer) or pay through Made-in China platform. 
Please inquire us about the details in advance.
Q: How are you going to deliver our goods ?
A: We can ship your goods either by air express (FedEx, DHL, UPS, TNT etc) or by sea. 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

What are the Temperature and Speed Limits for Different Drive Coupling Types?

The temperature and speed limits for different drive coupling types vary based on their design, materials, and intended applications. Here are some general guidelines for temperature and speed limits for common drive coupling types:

  • Elastomeric Couplings: Elastomeric couplings, which use rubber or elastomer elements, typically have temperature limits ranging from -40°C to 120°C (-40°F to 248°F). The speed limits for elastomeric couplings are generally up to 5000 RPM, but this can vary depending on the coupling size and design.
  • Grid Couplings: Grid couplings are designed to handle higher torque and speed requirements. They often have temperature limits between -20°C to 100°C (-4°F to 212°F). The speed limits for grid couplings can range from 5000 to 8000 RPM, depending on the coupling size and grid material.
  • Gear Couplings: Gear couplings are known for their high torque capacity and can operate at higher temperatures. Their temperature limits typically range from -20°C to 150°C (-4°F to 302°F). The speed limits for gear couplings can vary widely based on the coupling’s size and design, with some models capable of operating at speeds up to 10,000 RPM or higher.
  • Chain Couplings: Chain couplings are suitable for heavy-duty applications. They often have temperature limits between -20°C to 150°C (-4°F to 302°F) depending on the chain material. The speed limits for chain couplings can range from 1500 to 6000 RPM, depending on the chain type and size.

It’s essential to consider the operating environment, load conditions, and coupling material when determining the suitable temperature and speed limits for a specific application. Exceeding the recommended limits can lead to premature wear, reduced performance, and potential coupling failure.

Manufacturers of drive couplings provide detailed specifications and operating guidelines for their products. It’s crucial to consult the manufacturer’s documentation to ensure that the selected coupling is suitable for the intended application and operating conditions.

drive coupling

Understanding the Torsional Stiffness and Damping Characteristics of Drive Couplings

Torsional stiffness and damping are essential characteristics of drive couplings that play a significant role in the performance and behavior of mechanical power transmission systems. Let’s explore these two properties:

Torsional Stiffness:

Torsional stiffness refers to the ability of a drive coupling to resist angular deflection or twisting when subjected to a torque load. It is a measure of the coupling’s rigidity and is typically represented by a spring constant. A coupling with high torsional stiffness will exhibit minimal angular deflection when torque is applied, providing a more direct transfer of rotational power. On the other hand, a coupling with lower torsional stiffness allows for some flexibility and misalignment tolerance.

Drive couplings with high torsional stiffness are commonly used in applications where precision and accurate torque transmission are crucial, such as precision machinery and high-speed power transmission systems. Couplings with lower torsional stiffness are employed in situations where flexibility and shock absorption are needed to protect connected components from sudden torque spikes and vibrations.

Torsional Damping:

Torsional damping characterizes the ability of a drive coupling to dissipate energy in the form of heat when subjected to torsional vibrations. Damping reduces the amplitude of vibrations and prevents resonance, which can be detrimental to the coupling and the entire power transmission system.

Drive couplings with adequate torsional damping can absorb and dampen torsional vibrations, preventing excessive wear on the coupling and the connected machinery. The damping capacity of the coupling is determined by its material properties and design. High torsional damping is especially important in applications where the drive system experiences varying torque loads and vibrations, as it helps maintain stability and extends the life of the coupling and other mechanical components.

Both torsional stiffness and damping are critical factors to consider when selecting a drive coupling for a specific application. The appropriate coupling choice will depend on the desired level of rigidity, flexibility, and vibration absorption required for the mechanical power transmission system.

drive coupling

What is a Drive Coupling and its Role in Mechanical Power Transmission?

A drive coupling is a mechanical device used to connect two shafts in a power transmission system. Its primary role is to transmit torque from one shaft to another while accommodating misalignments and absorbing shocks and vibrations. Drive couplings play a crucial role in transferring mechanical power efficiently and reliably between rotating components in various industrial applications.

The key features and functions of drive couplings include:

  • Power Transmission: Drive couplings are designed to transmit mechanical power from the driving shaft to the driven shaft. As the driving shaft rotates, the coupling transfers the torque to the driven shaft, causing it to rotate and perform the intended task, such as driving a pump, conveyor, or generator.
  • Misalignment Compensation: In real-world applications, shafts may not be perfectly aligned due to factors such as assembly tolerances, thermal expansion, or equipment settling. Drive couplings can accommodate angular, parallel, and axial misalignments between the shafts, ensuring smooth power transmission even under misaligned conditions. This capability helps to reduce stress on connected machinery and enhances overall system reliability.
  • Shock and Vibration Damping: During operation, rotating equipment often experiences shocks and vibrations that can be harmful to the machinery and reduce its lifespan. Drive couplings with elastomeric or flexible elements can dampen these shocks and vibrations, providing a smoother power transmission and protecting the connected equipment from excessive loads.
  • Overload Protection: In some applications, sudden torque spikes or overloads may occur due to process changes or unforeseen events. Drive couplings equipped with torque-limiting features can protect the machinery from damage by disengaging or slipping when the torque exceeds a predetermined threshold.
  • Reduced Maintenance: Drive couplings that require minimal maintenance contribute to the overall efficiency of the power transmission system. By reducing the need for frequent maintenance and lubrication, downtime is minimized, leading to increased productivity and cost savings.
  • Compact and Versatile Design: Drive couplings are available in various designs and sizes to accommodate different application requirements. Their compact and versatile design makes them suitable for a wide range of industries and machinery types, from small motors in automotive systems to large industrial drives in mining and manufacturing processes.

Overall, drive couplings are essential components in mechanical power transmission systems. Their ability to efficiently transfer torque while compensating for misalignments and absorbing shocks ensures reliable and long-lasting operation of rotating equipment in various industries.

China Hot selling Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component  China Hot selling Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component
editor by CX 2024-04-04

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *