China Best Sales Factory Sale SWC-Wd Series Stainless Steel Cardan Drive Shaft Universal Joint Coupling

Product Description

SWC-Wd Type Cardan Shaft Coupling Transmission Speed Reducer Universal Shaft Coupling for Gear Box

SWC-WD-type cross shaft universal coupling is 1 of the most common coupling. With its characteristic structure enables not on the same axis or the axis angle greater or axial movement of a larger two-axis continuous constant angular velocity rotation, and reliably transmit torque and motion. Can be widely used in metallurgy, lifting, engineering, transportation, mining, oil, shipbuilding, coal, rubber, paper machinery and other heavy machinery industry, mechanical shafting transmitting torque.

1. The ability to have a large angle compensation.
2. The structure is compact and reasonable. SWC-WD type with integral fork, so carrying more reliable.
3. The carrying capacity. Compared with other types of the same diameter rotary joint axis, it delivers more torque, the turning diameter of restricted mechanical equipment, the complete range is more advantageous.
4. High transmission efficiency. Its transmission efficiency of 98-99.8% for high-power transmission, energy-saving effect.
5. carrying smooth, low noise, easy maintenance, assembly and disassembly.

Product parameters:


Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

Do Drive Couplings Require Periodic Lubrication, and If So, How Often?

Yes, drive couplings often require periodic lubrication to ensure smooth and efficient operation. The frequency of lubrication depends on the type of coupling and the specific application. Here are some general guidelines for lubricating drive couplings:

  • Flexible Couplings: Most flexible drive couplings, such as elastomeric and grid couplings, do not require frequent lubrication. These couplings typically utilize elastomeric materials or grid elements that do not need lubrication. However, it is essential to inspect the coupling regularly for signs of wear or damage and lubricate any movable components if necessary. Consult the manufacturer’s guidelines for specific lubrication recommendations.
  • Gear Couplings: Gear couplings, which use gear teeth to transmit torque, require periodic lubrication. The lubrication interval depends on factors like the coupling size, operating conditions, and the type of lubricant used. In many cases, gear couplings require lubrication every 3 to 6 months or after a certain number of operating hours. Regular inspections should be carried out to check the lubricant’s condition and replenish it as needed.
  • Chain Couplings: Chain couplings, which employ roller chains, necessitate regular lubrication to reduce friction and wear. The frequency of lubrication can vary based on the chain type, speed, and operating conditions. Some chains require lubrication every 1 to 3 months, while others may need more frequent attention. Proper lubrication helps extend the chain’s life and maintain the coupling’s efficiency.

When applying lubrication to drive couplings, it is essential to use the recommended lubricant specified by the manufacturer. The lubricant’s properties, such as viscosity and temperature range, should align with the coupling’s requirements and the application’s operating conditions. Over-lubrication can be as detrimental as under-lubrication, so it’s crucial to adhere to the recommended lubrication amounts.

In summary, drive couplings may require periodic lubrication depending on their type and design. Following the manufacturer’s recommendations for lubrication intervals and using the appropriate lubricant helps ensure the drive coupling operates smoothly and efficiently throughout its service life.

drive coupling

Understanding the Torsional Stiffness and Damping Characteristics of Drive Couplings

Torsional stiffness and damping are essential characteristics of drive couplings that play a significant role in the performance and behavior of mechanical power transmission systems. Let’s explore these two properties:

Torsional Stiffness:

Torsional stiffness refers to the ability of a drive coupling to resist angular deflection or twisting when subjected to a torque load. It is a measure of the coupling’s rigidity and is typically represented by a spring constant. A coupling with high torsional stiffness will exhibit minimal angular deflection when torque is applied, providing a more direct transfer of rotational power. On the other hand, a coupling with lower torsional stiffness allows for some flexibility and misalignment tolerance.

Drive couplings with high torsional stiffness are commonly used in applications where precision and accurate torque transmission are crucial, such as precision machinery and high-speed power transmission systems. Couplings with lower torsional stiffness are employed in situations where flexibility and shock absorption are needed to protect connected components from sudden torque spikes and vibrations.

Torsional Damping:

Torsional damping characterizes the ability of a drive coupling to dissipate energy in the form of heat when subjected to torsional vibrations. Damping reduces the amplitude of vibrations and prevents resonance, which can be detrimental to the coupling and the entire power transmission system.

Drive couplings with adequate torsional damping can absorb and dampen torsional vibrations, preventing excessive wear on the coupling and the connected machinery. The damping capacity of the coupling is determined by its material properties and design. High torsional damping is especially important in applications where the drive system experiences varying torque loads and vibrations, as it helps maintain stability and extends the life of the coupling and other mechanical components.

Both torsional stiffness and damping are critical factors to consider when selecting a drive coupling for a specific application. The appropriate coupling choice will depend on the desired level of rigidity, flexibility, and vibration absorption required for the mechanical power transmission system.

drive coupling

How does a Flexible Drive Coupling differ from a Rigid Drive Coupling?

A drive coupling is a mechanical device used to connect two shafts in a power transmission system. Drive couplings can be broadly classified into two main categories: flexible drive couplings and rigid drive couplings. Each type offers distinct advantages and is suitable for different application requirements. Here’s how a flexible drive coupling differs from a rigid drive coupling:

Flexible Drive Coupling:

A flexible drive coupling is designed with an element that allows some degree of movement and flexibility between the connected shafts. This element can be made of various materials, such as elastomers, metal discs, or grids. The flexibility of the coupling element enables it to accommodate misalignments, shocks, and vibrations, making it ideal for applications where these factors are present.

Main Characteristics:

  • Misalignment Absorption: Flexible couplings can compensate for angular, parallel, and axial misalignments between the shafts, reducing stress on connected machinery and extending component life.
  • Shock and Vibration Damping: The flexible element of the coupling dampens shocks and vibrations, protecting the connected equipment from sudden impact loads and reducing noise and wear.
  • Torsional Flexibility: Flexible couplings can twist and bend, providing torsional flexibility to accommodate fluctuations in torque and prevent damage from torque spikes.
  • Energy Absorption: In high-torque applications, the flexible element absorbs energy and reduces peak loads, which can be beneficial for protecting the drivetrain.

Rigid Drive Coupling:

A rigid drive coupling, on the other hand, is designed to provide a direct and rigid connection between the shafts. It has little to no flexibility or movement in the coupling itself. Rigid couplings are typically used when precise shaft alignment is essential, and there is minimal misalignment or vibration in the system.

Main Characteristics:

  • Precision Alignment: Rigid couplings ensure precise alignment between the connected shafts, which is critical in applications requiring accurate positioning and minimal shaft deflection.
  • No Misalignment Compensation: Unlike flexible couplings, rigid couplings do not compensate for misalignments, so proper alignment during installation is crucial to prevent premature wear or damage to the equipment.
  • Torsional Stiffness: Rigid couplings have high torsional stiffness, meaning they efficiently transmit torque with minimal torsional deflection.
  • High Torque Capacity: Due to their solid construction, rigid couplings can handle higher torque loads compared to some flexible coupling types.

In summary, the choice between a flexible drive coupling and a rigid drive coupling depends on the specific application’s requirements, including the degree of misalignment, shock and vibration levels, torque capacity, and precision alignment needs. Flexible couplings are suitable for applications with misalignments and dynamic loads, while rigid couplings are preferred for precise positioning and high-torque applications with minimal misalignment.

China Best Sales Factory Sale SWC-Wd Series Stainless Steel Cardan Drive Shaft Universal Joint Coupling  China Best Sales Factory Sale SWC-Wd Series Stainless Steel Cardan Drive Shaft Universal Joint Coupling
editor by CX 2024-04-08


Leave a Reply

Your email address will not be published. Required fields are marked *