China wholesaler Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery SWC390e

Product Description

        Cardan joint drive shaft coupling used for pipe mill machinery SWC390E

Brief Introduction

Processing flow

Why choose us!

                                                                                                                                                                                                                                                                                        Quality Control                                                                                                                                                                                               

       
      

Product Description

Structure Type E Flexible or Rigid Rigid Standard or Nonstandard Standard
Material Alloy steel Brand name HangZhou XIHU (WEST LAKE) DIS. Place of origin HangZhou
Model SWC390E-2100 Raw materials Casting and forging Length 2100mm
Flange DIA 390mm Nominal torque 320KN.m Coating Heavy duty industrial paint
Paint clour Customization Application Tube Mill OEM/ODM Available
Certification ISO,TUV,SGS Price calculate according to model Custom service Available

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 15 -20 working days,depend on the actual produce condition

FAQ

Q: Are you trading company or manufacturer ?
A: We  are  a  professional  manufacturer specializing  in  manufacturing cardan  shafts. We supply cardan shafts for the wholesalers , dealers  and end-users from different countries. 
 
Q: Can you do OEM? And what is your min order ?
A: Yes, absolutely. Generally, min order is1 set.  Most of our products are Customized. Each order from our factory, we always produce cardan shaft after customer confirmed the drawing. So we didn’t have stock.
 
Q: How does your factory do regarding quality control?
A:Quality is priority! We always attach great importance to quality controlling from the very beginning to the  end:
1) Firstly, we have QC department to control the quality
2) Secondly, we have all detailed records for nonconformity products, then we will make summary according to these records, avoid it happen again.
3) Thirdly,All complaints from customers about quality are reported directly to the general manager.
4)Fourthly,Have first-class production equipment, including CNC Machines and machining center.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

Explaining the Concept of Backlash and How It Affects Drive Coupling Performance

Backlash is a mechanical phenomenon that refers to the amount of free movement or play between the mating components of a drive system. In the context of drive couplings, backlash is the angular or linear displacement that occurs when there is a change in direction or a reversal of motion. It is mainly a result of clearances between the coupling’s mating elements.

The presence of backlash can have both positive and negative effects on drive coupling performance:

  • Negative Effects of Backlash:
    • Reduced Accuracy: Backlash can introduce inaccuracies in position control systems, especially in applications requiring precise positioning. The free movement between the coupling elements can result in a delay in response when the direction of rotation changes, leading to positioning errors.
    • Vibration and Noise: Backlash can cause vibration and noise during operation, especially in systems with frequent changes in direction or load. The impact and collision of the mating elements can generate noise and contribute to mechanical wear.
    • Increased Wear: In systems with significant backlash, the constant impact between the mating components can accelerate wear and reduce the lifespan of the coupling and other connected machinery.
  • Positive Effects of Backlash:
    • Shock Absorption: In certain applications, a controlled amount of backlash can act as a shock absorber, dampening sudden impact loads and reducing stress on the system during abrupt changes in motion.
    • Misalignment Compensation: Backlash can compensate for minor misalignments between shafts, reducing the risk of damage and excessive load on the coupling and connected components.
    • Thermal Expansion Compensation: Backlash can help accommodate thermal expansion and contraction of the components, allowing the coupling to function effectively even as the temperature changes.

The appropriate amount of backlash depends on the specific application and the coupling type. In some cases, minimizing backlash is essential for precision and accuracy, while in others, a controlled amount of backlash can be beneficial for shock absorption and misalignment compensation.

It’s crucial to consider the effects of backlash when selecting a drive coupling and designing a power transmission system. Manufacturers often provide information on the level of backlash in their coupling designs, enabling users to make informed decisions based on their application’s requirements.

drive coupling

Exploring the Use of Elastomeric Materials in Flexible Drive Couplings

Elastomeric materials play a vital role in the design and function of flexible drive couplings. These materials are known for their unique properties, including flexibility, resilience, and damping capabilities, making them well-suited for various power transmission applications. Here are some key aspects of elastomeric materials in flexible drive couplings:

  • Flexibility: Elastomeric materials, such as natural rubber and synthetic elastomers like polyurethane and neoprene, exhibit high flexibility. This flexibility allows them to deform under load, accommodating misalignments and absorbing shocks and vibrations during operation. The ability to flex helps prevent undue stress on the connected machinery and ensures a smooth and reliable power transmission.
  • Damping: Elastomers possess excellent damping characteristics, which means they can absorb and dissipate energy when subjected to torsional vibrations and dynamic loads. This damping property is crucial in minimizing resonance and preventing harmful vibrations from propagating through the system. Couplings with good damping capabilities offer improved system stability and reduced wear on components.
  • Resilience: Resilience refers to the ability of elastomeric materials to return to their original shape after being deformed by torque or misalignment. This property ensures that the coupling remains functional even after experiencing temporary overloads or torsional stresses. The resilience of elastomers contributes to the longevity and reliability of the coupling.
  • Easy Installation: Elastomeric couplings are often designed with a simple and compact structure, making them easy to install and maintain. Their flexibility allows for quick assembly and disassembly, which can be advantageous during equipment maintenance and repairs.
  • Misalignment Compensation: The high flexibility of elastomeric materials allows the coupling to compensate for both angular and parallel misalignments between shafts. This ability to tolerate misalignments without transmitting excessive loads to connected equipment protects the machinery from premature wear and damage.
  • Cost-Effectiveness: Elastomeric couplings are generally more cost-effective compared to other types of couplings with elaborate designs. Their simple construction and use of elastomeric materials make them an economical choice for various industrial applications.

Elastomeric materials offer a compelling combination of mechanical properties that make them highly suitable for flexible drive couplings. When selecting a coupling for a specific application, considering the type and characteristics of the elastomeric material used is crucial to ensure the coupling meets the performance requirements and environmental conditions of the system.

drive coupling

Advantages of Using Drive Couplings in Automotive Systems

Drive couplings play a critical role in automotive systems, contributing to the efficient and reliable operation of various components. They are used in several applications within vehicles, providing several advantages that enhance performance, comfort, and safety. Here are some of the key advantages of using drive couplings in automotive systems:

  • Smooth Power Transmission: Drive couplings efficiently transmit power from the engine to different automotive components, such as the transmission, differential, and wheels. They provide a smooth power transfer, reducing energy losses and ensuring optimal performance.
  • Shock Absorption: Automotive drive couplings with flexible elements, such as elastomeric materials or metal discs, absorb shocks and vibrations caused by road irregularities. This helps improve the overall comfort of the vehicle and reduces wear on drivetrain components.
  • Misalignment Compensation: Misalignments can occur due to chassis flexing or other factors in automotive systems. Drive couplings with flexible elements can accommodate these misalignments, reducing stress on the connected components and extending their lifespan.
  • Noise and Vibration Reduction: By dampening vibrations and noise, drive couplings contribute to a quieter and more pleasant driving experience for passengers.
  • Energy Efficiency: Drive couplings ensure efficient power transmission, which is essential for maximizing fuel economy and reducing emissions in modern vehicles.
  • Protection of Expensive Components: Drive couplings act as protective components by isolating the drivetrain from shocks and torque spikes. This helps prevent damage to more expensive components like the transmission and differential.
  • Adaptability to Different Configurations: Automotive drive couplings are available in various designs and sizes, allowing manufacturers to adapt them to different vehicle configurations and drivetrain layouts.
  • Reliability and Longevity: Properly designed and maintained drive couplings have a long service life, contributing to the overall durability and reliability of the vehicle.
  • Safety Enhancement: In certain situations, such as during sudden accelerations or decelerations, drive couplings help maintain stable power delivery, thus contributing to better vehicle handling and control.
  • Less Wear and Tear: By absorbing shocks and reducing vibrations, drive couplings reduce wear and tear on drivetrain components, leading to reduced maintenance requirements and longer component life.

In summary, drive couplings are essential components in automotive systems that provide numerous advantages, including smooth power transmission, shock absorption, misalignment compensation, noise reduction, energy efficiency, and increased safety. These advantages contribute to the overall performance, comfort, and longevity of vehicles in various driving conditions.

China wholesaler Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery SWC390e  China wholesaler Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery SWC390e
editor by CX 2024-04-11

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *