China Standard FCL Flexible Shaft Couplings for Reducer and Motor

Product Description

SC Transmission FCL Flexible Shaft Couplings for Reducer and Motor

 

Product Description

FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 

As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.

Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Product Parameters

SIZE     D D1 d1 L C n-M kg
  r/min
N.m  
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

 

Company Profile

FAQ

Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Specific Safety Precautions When Working with Shaft Couplings

Working with shaft couplings involves handling rotating machinery and mechanical components. To ensure the safety of personnel and prevent accidents, specific safety precautions should be followed during installation, maintenance, and operation:

1. Lockout-Tagout (LOTO):

Prior to any work on machinery involving couplings, implement a lockout-tagout procedure to isolate the equipment from its power source. This ensures that the machinery cannot be accidentally energized during maintenance or repair, protecting workers from potential hazards.

2. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment (PPE), including safety goggles, gloves, and appropriate clothing, when working with shaft couplings. PPE helps protect against potential hazards such as flying debris, sharp edges, or contact with moving parts.

3. Proper Training and Supervision:

Only trained and authorized personnel should work with shaft couplings. Ensure that workers have the necessary knowledge and experience to handle the equipment safely. Adequate supervision may be required, especially for less-experienced personnel.

4. Inspection and Maintenance:

Regularly inspect shaft couplings and associated components for signs of wear, damage, or misalignment. Address any issues promptly to prevent equipment failure and potential accidents.

5. Follow Manufacturer’s Guidelines:

Adhere to the manufacturer’s instructions and guidelines for installation, operation, and maintenance of the specific coupling model. Improper use or deviation from recommended procedures may compromise safety and void warranties.

6. Avoid Overloading:

Do not exceed the torque and speed limits specified by the coupling manufacturer. Overloading a coupling can lead to premature failure and pose safety risks to operators and nearby equipment.

7. Shaft Guards and Enclosures:

Install appropriate guards and enclosures to prevent accidental contact with rotating shafts and couplings. These safety measures help reduce the risk of entanglement and injuries.

8. Zero Energy State:

Ensure that all stored energy in the equipment, such as compressed air or hydraulic pressure, is released and the equipment is in a zero energy state before starting work.

9. Avoid Loose Clothing and Jewelry:

Remove or secure loose clothing, jewelry, and other items that could get caught in moving parts.

10. Maintain a Clean Work Area:

Keep the work area clean and free from clutter to avoid tripping hazards and facilitate safe movement around the machinery.

By following these safety precautions, personnel can minimize the risks associated with working with shaft couplings and create a safer working environment for everyone involved.

“`shaft coupling

Temperature and Speed Limits for Different Shaft Coupling Types

The temperature and speed limits of shaft couplings vary depending on the materials and design of the coupling. Manufacturers provide specific guidelines and ratings for each coupling type. Below are general temperature and speed limits for some common shaft coupling types:

1. Elastomeric Couplings:

Elastomeric couplings, such as jaw couplings and tire couplings, typically have temperature limits ranging from -40°C to 100°C (-40°F to 212°F). The speed limits for elastomeric couplings are generally up to 5,000 RPM, but some designs may allow higher speeds.

2. Metallic Couplings:

Metallic couplings, like gear couplings and disc couplings, can handle a wider temperature range, typically from -50°C to 200°C (-58°F to 392°F). The speed limits for metallic couplings vary based on the size and design, but they can range from 3,000 RPM to over 10,000 RPM.

3. Grid Couplings:

Grid couplings have temperature limits similar to metallic couplings, ranging from -50°C to 200°C (-58°F to 392°F). The speed limits for grid couplings are typically in the range of 3,000 to 5,000 RPM.

4. Oldham Couplings:

Oldham couplings usually have temperature limits from -30°C to 100°C (-22°F to 212°F) and speed limits ranging from 1,000 to 5,000 RPM.

5. Beam Couplings:

Beam couplings generally have temperature limits from -40°C to 120°C (-40°F to 248°F) and speed limits between 5,000 to 10,000 RPM.

6. Fluid Couplings:

Fluid couplings are suitable for a wide range of temperatures, often from -50°C to 300°C (-58°F to 572°F). The speed limits depend on the size and design of the fluid coupling but can extend to several thousand RPM.

It’s important to note that these are general guidelines, and the actual temperature and speed limits may vary based on the specific coupling manufacturer, material quality, and application requirements. Always refer to the manufacturer’s documentation and technical specifications for accurate and up-to-date temperature and speed limits for a particular shaft coupling model.

“`shaft coupling

Types of Shaft Couplings and Their Applications in Various Industries

Shaft couplings come in various types, each designed to meet specific application requirements and address different types of misalignment. Here are some common types of shaft couplings and their applications in various industries:

1. Jaw Couplings:

Applications: Jaw couplings are widely used in power transmission applications, including conveyor systems, pumps, compressors, and industrial machinery. They are suitable for moderate torque requirements and provide good misalignment compensation.

2. Gear Couplings:

Applications: Gear couplings are used in heavy-duty industrial applications such as steel mills, paper mills, and mining equipment. They offer high torque capacity and can handle significant misalignments.

3. Disc Couplings:

Applications: Disc couplings are commonly used in precision machinery and automation systems, such as printing presses, machine tools, and robotics. They provide excellent torsional stiffness and are ideal for applications requiring precise positioning.

4. Grid Couplings:

Applications: Grid couplings are used in various industrial applications, including fans, pumps, and compressors. They offer high torque capacity and good shock absorption.

5. Oldham Couplings:

Applications: Oldham couplings are used in applications requiring high misalignment compensation, such as stepper motor drives and motion control systems.

6. Diaphragm Couplings:

Applications: Diaphragm couplings are used in critical applications that demand high torque transmission accuracy, such as aerospace, medical equipment, and semiconductor manufacturing.

7. Elastomeric Couplings:

Applications: Elastomeric couplings, like spider couplings, find applications in general industrial machinery, HVAC systems, and conveyor systems. They provide damping properties and flexibility to accommodate misalignments.

8. Torsionally Rigid Couplings:

Applications: Torsionally rigid couplings are used in applications requiring precise torque transmission, such as precision machining equipment and high-speed spindles.

9. Fluid Couplings:

Applications: Fluid couplings are used in heavy machinery and drivetrains, such as mining equipment, crushers, and marine propulsion systems. They provide smooth acceleration and dampening of shock loads.

10. Magnetic Couplings:

Applications: Magnetic couplings are used in applications where hermetic sealing is required, such as chemical processing, pumps, and mixers. They allow for torque transmission without direct physical contact.

The selection of the appropriate shaft coupling type depends on factors such as torque requirements, speed, misalignment, operating conditions, and the specific needs of the application. Using the right coupling ensures efficient power transmission, protects equipment from misalignment-related issues, and enhances the overall reliability and performance of industrial machinery and systems.

“`
China Standard FCL Flexible Shaft Couplings for Reducer and Motor  China Standard FCL Flexible Shaft Couplings for Reducer and Motor
editor by CX 2024-04-15

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *